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SUMMARY 
Within multivariant elements, which have restricted degrees of freedom at some nodes, different velocity 
components have different variations. Shape functions for the multivariant elements Q: Po and R l  Po are 
developed. With such shape functions the value of a velocity component within a multivariant element is 
shown to depend upon all the independent components of velocity at the nodes of the element. 

The use of the QL Po element to simulate flows with discontinuous boundary conditions generated 
disturbance throughout the flow domain, giving erroneous pressure and velocity distributions. The Q Po 
element restricted the disturbance due to  such discontinuities to a small region near the singular points, 
whereas the R,f Po element completely eliminated the fluctuations. Flows with discontinuous boundary 
conditions were simulated with reasonable accuracy by partially relaxing the no-slip condition on the Q ,  Po 
elements near the singular points. 
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1. INTRODUCTION 

Flow simulation of viscous incompressible materials using the finite element method has been an 
active topic of investigation for more than 20 years and is still a rapidly evolving subject. Various 
types of finite elements were used in the past to simulate such incompressible flows. Owing to a 
lack of understanding of the convergence properties of the elements used, erroneous results were 
obtained at times from many of these elements. It was discovered by Hood and Taylor',2 that 
equal-order interpolations for velocity and pressure give erroneous pressure distributions. They 
used interpolations for velocity one order higher than those for pressure to obtain better results. 
However, even with these mixed interpolations, difficulties were encountered in the pressure 
solution. For instance, the simplest of such mixed interpolations, using linear approximation for 
velocity (bilinear for two-dimensional quadrilateral elements and trilinear on three-dimensional 
brick elements) and piecewise constant approximation for pressure (Q1 Po),$ gives acceptable 
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velocities for certain combinations of boundary conditions and element distribution, but the 
pressure distribution obtained is afflicted with the checkerboard pressure mode.3 A pressure 
distribution suffering from the checkerboard pressure mode exhibits large oscillations between 
neighbouring elements. The checkerboard pressure mode can be filtered out easily on a regular 
mesh by averaging the pressure over the neighbouring elements, but filtering this spurious 
pressure mode on a distorted mesh is a very complicated problem. Similar difficulties were 
encountered in the higher-order QkQk-l  ( k >  1) elements. Hood and Taylor used the P,P, 
triangular element to obtain a reliable two-dimensional simulation of incompressible flows. 
Brezzi and Falk4 and Stenberg5 generalized it to the P,P, element, which also gives results that 
are free of spurious pressure modes. The Q,P,- elements, with I > 1, were also found to lead to 
stable approximations to the velocity and pressure fields. 

Pioneering work on the existence and uniqueness of the solution of the Navier-Stokes equation 
for incompressible flows was done by BabuSka6 and Brezzi.’ They studied it as a saddle point 
problem arising from the Lagrangian multiplier approach. For the flow of incompressible fluids 
the Lagrangian multiplier is nothing but the pressure in the flow domain. BabuSka and Brezzi 
introduced the compatibility condition to be satisfied by the velocity and pressure solution 
spaces. The Q,Po and other higher-order QkQk-l (k> 1) elements do not satisfy the 
BabuSka-Brezzi condition, which is why the pressure distribution obtained from these elements is 
generally afflicted with spurious pressure modes. 

By enriching the lower-order standard elements, Fortin’ introduced a series of new elements 
which satisfy the BabuSka-Brezzi condition and are also computationally very efficient. The 
simplest member of the series, Q: Po is derived from the Q1 Po (trilinear velocity and constant 
pressure) ‘standard’ brick element. The Q: Po element is obtained by adding one velocity node on 
each of the six faces of the Q1 Po element (Figure 1). Each of the nodes on the faces has only one 
degree of freedom, which is the velocity component normal to the face. Owing to the restricted 
degree of freedom at the mid-face nodes, the Q: Po element is multivariant in nature, i.e. different 
velocity components vary differently within the element. Velocity components parallel to one of 
the six faces of the Q: Po element vary bilinearly over the face, whereas variation of the velocity 
component normal to a face is biquadratic over the face. The pressure is constant within a Q: Po 
element. Another multivariant finite element, called RZP,, is shown in Figure l(c). It is obtained 
from the Q t P o  element by adding one velocity node on each of the 12 edges. Each of these new 
nodes has only two degrees of freedom, which are the velocity components normal to the edge. 
Therefore on an Rl Po element the velocity components normal to an edge vary quadratically 
over the edge, whereas the velocity component along an edge varies linearly over the edge. The 
pressure is constant within an R: Po element. 

(a) (b) (C) 

Figure 1. Three-dimensional finite elements: (a) Q1 Po element; (b) Q; Po element; (c) R l  Po element 
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In the finite element method the velocity and pressure at a point inside an element are 
represented as a linear form in terms of the velocity and pressure values at the nodes: 

u = Niui, 

p=Np’pi, 

where Ni are the velocity shape functions, Nip’ are the pressure shape functions, ui and pi are the 
velocity and pressure respectively at the nodes of the element and u and p are the velocity and 
pressure respectively at a point inside the element. 

Within the elements which have three degrees of freedom at all the velocity nodes, the three 
velocity components have identical variation (univariant elements). The value of a velocity 
component within a univariant element depends only upon the nodal values of the same velocity 
component. That is, the value of the velocity component is independent of the values of other 
components of velocity at the nodes. For instance, for the Q,P, element, if ux, uy and uz are the 
velocity components in the x-, y- and z-directions respectively, then 

m m m 

i =  1 i = l  i = l  
uX= C N i u ; ,  uY= C Niu;, u’= 1 NiuT, (3) 

where i =  1, . . . , 8  correspond to the eight velocity nodes of the Q,Po element and u;, ur and uf 
are respectively the x-, y- and z-components of velocity at the ith node. 

However, for the elements which have restricted degrees of freedom at some of the nodes, 
different components vary differently within the element (multivariant elements). For such 
elements within which different velocity components have different variations, each component of 
velocity depends upon the values of all independent velocity components at the nodes of the 
element. At a point inside a Q: Po element 

A 14 

u y =  1 (Nyu;+N;yU;+NyUf)+ 2 N ; u l ,  
i =  1 i = 9  

8 1 4  
u’= 1 ( N f u ; + N T Y u ; + N f u f ) +  Nful, 

i =  1 i = 9  

(4) 

where Ngfi (u, /? = x, y, z )  are the shape functions corresponding to the eight corner nodes, 
Ng (a = x, y, z) are the shape functions corresponding to the six mid-face nodes, u;, uy and uf are 
respectively the x-, y- and z-components of velocity at the ith corner node and ul is the normal 
component of velocity at the ith mid-face node. 

Similarly, at a point inside an R: Po element each velocity component depends upon the values 
of three components of velocity at the eight corner nodes, two velocity components at the 12 mid- 
edge nodes and the normal component of velocity at the six mid-face nodes. Therefore at a point 
inside an R: Po element 
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where Ngs(a =x, y ,  z;  /I = a, b) are the shape functions at  the mid-edge nodes and ur’ and u;’ are 
the two velocity components normal to the edge at the ith mid-edge node. 

For all the finite element types discussed in this paper, pressure is constant in the element. 
Therefore the pressure shape function is 

N ( p )  = 1. 

Even for continuous pressure elements the pressure shape functions are quite straightforward. 
The velocity shape functions for the Q: Po and R: Po elements, which give the values of various 
terms in equations (4) and (5),  are developed later in this paper. Shape functions for the QIPo 
element are also included. Without any confusion the velocity shape functions are just referred to 
as shape functions. The natural co-ordinate system on a brick element, shown in Figure 2, is 
chosen so that the co-ordinate values on the faces of the brick are & 1. 

2. BASIC EQUATIONS FOR VISCOUS INCOMPRESSIBLE FLOW 

For creeping flow of the generalized Newtonian fluid, neglecting the inertial and body forces, the 
momentum equation can be represented as 

div (2p.Y) - grad p = 0 in R. (6) 
Here p is the viscosity of the fluid, p is the pressure, R is the flow domain in R3 and i is the strain 
rate tensor 

E=i[grad u+(grad u ) ~ ] ,  (7) 

divu=O in Q. (8) 

where u is the velocity at a point in R. The incompressibility constraint can be represented as 

The boundary conditions to be satisfied are 

where T is the traction force at the boundary, rT is the part of the boundary where the traction 
vector is given, Tu is the part of the boundary where the velocity is given, is the prescribed value 
of traction vector on rT and U is the prescribed value of velocity on r,,. 

Figure 2. Natural co-ordinate system for a brick element 
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In order to obtain a variational form of the incompressible flow problem, we need to define the 
solution spaces for velocity and pressure. Defining on R the space of square integrable functions 

the Sobolov space 

H (Q) = { u I u E L2(R), grad u E (L2(Q))3}  

and 

V=(H’(Q))3 ,  

we have the solution space of velocity 

V,={V~VE V, v = U  on r,} 
and the solution space of pressure 

Q = L2(R). 

The variational form of the incompressible flow problem described in equations (6H10) is: 
find (u, p ) ~  V, x Q such that 

la 2pE(u):E”(v)dx- T-vds  VVE V,,, (1 1) 

Iaqdivudx=O VqEQ, (12) 

where 

V,={VIVE V, v=Oonr,}. 

According to the BabuSka-Brezzi condition, for the existence of a unique solution to the 
variational form of the incompressible flow problem (equations (11) and (12)) there must exist a 
positive constant k such that 

where 

II 4 IlQ/R = inf II 4 + c  I IQ  
C€R 

must be used since the pressure is defined only up to an additive constant. 
Fortin’ showed that the BabuHka-Brezzi condition will be satisfied by a combination of 

discrete velocity and pressure solution spaces if for any given velocity field v E Vone can construct 
a vector field v h  in the discrete solution space of velocity such that 

bQ diV(V-v,,)q,,dx=O VqhEQh, (14) 

11 vh I IH1( f l )GC 11 l\H1(CZ)? (15) 
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with constant C > O  independent of h, the discretization factor. In equations (14) and (15) Qh is the 
finite-dimensional solution space of pressure, q h  is an element of Qh and H1(R) is the Sobolov 
space. 

In order to construct a discrete vector field on the Q:Po or R i p o  element, which satisfies 
equation (14), the normal component of velocity at the six mid-face nodes must be determined by 
the equation If, vhds=If,  vds, i = l ,  . . . , 6 ,  (16) 

wherefi', i =  1, . . . , 6, are the six faces of the element. Some of these interpolation operators are 
not in H'(Q) and hence do not satisfy equation (15). However, by using a local regularization 
operator described by Girault and Raviart," a discrete velocity field satisfying both equations 
(14) and (15) can be constructed for the Q:Po as well as for the R:Po element. Therefore the 
Q: Po and Ri Po elements both satisfy the BabuSka-Brezzi condition. 

3. SHAPE FUNCTIONS FOR QIPo ELEMENT 

The shape functions for the QIPo element are given in most of the standard finite element 
books."." Using the variables 

50 = 55i .  ?o=??i ,  i o = i i i ,  (17) 
where t i ,  qi and C i  are the normalized co-ordinates of the ith node, the general expression for the 
shape function corresponding to the ith node of the Q,Po element is 

Ni =+(I+  50) (1 + ~ 0 )  (1 +to) .  (18) 

4. SHAPE FUNCTIONS FOR QTPo ELEMENT 

In terms of the variables 
mid-face nodes of the Q: Po element is 

and c0 the general expression for the shape function for the 

Ni=3(1  + t o  + ? o + t 0 ) ( 1 - t 2  +5!)(1-q2 +~!)(l-i' +C!). (19) 

N i = t ( l  +50)(1 +tlo)(l + i ~ ~ C ~ ~ ~ ~ + ~ ~ + i ~ ~ ~ ~ ~ ~ 0 ~ l 0 ~ ~ 0 5 ~ ~ ~ 0 % 0 1 ~  (20) 

For the corner nodes of the Q: Po element the general expression for the shape function is 

However, these shape functions cannot be used as the reference shape functions for the Q: Po 
element because the normal vector at a mid-face node of the reference element does not remain 
normal to the corresponding face of the actual element in the global co-ordinate system. 

On the Q: Po element we want the velocity components tangential to a face to vary bilinearly 
over the face and the velocity component normal to the face to vary biquadratically over the face. 
This can be achieved by separating the tangential and normal components of velocity at  each of 
the six mid-face nodes of the Q: Po element. Using the shape functions presented in equations (19) 
and (20), the velocity within a Q: Po element is 

8 14 
U =  1 N i u i +  Niui ,  

i =  1 i = 9  

where i =  1, . . . , 8 correspond to the eight corner nodes, i=9, . . . , 14 correspond to the six mid- 
face nodes and ui is the velocity at the ith node. 
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By separating the normal and tangential components of velocity at the mid-face nodes, we 
obtain 

8 14 

i =  1 i = 9  
u= c N i u i +  1 Ni([ui-(ui*ni)ni]+(ui.ni)ni), (21) 

where n, is the unit vector normal to the face at the ith mid-face node. 
Since the velocity components tangential to a face of a QF Po element vary bilinearly over the 

face, the value of the tangential velocity components at the mid-face node can be represented in 
terms of their values at the four nodes at the corners of the face. Thus 

8 

i =  1 
u =  1 Niui+ 1 Ni a 1 [uC-(u;ni)ni] 

i = 9  l4 ( ,:, 
where c = 1, . . . , 4  denote the nodes at the corners of the face on which the ith (i = 9, . . . , 14) mid- 
face node is located and u, is the velocity at the corner node c. 

By interchanging the summations in the second term of equation (22), we obtain 
8 8 3 Nf 14 

i =  1 i = l  f = 1  4 i = 9  
u= c Niui+ 1 c -[ui-(ui.nf)nf]+ 1 Ni(ui*ni)ni, 

where f= 1, . . . , 3 correspond to the mid-face nodes adjacent to the ith (i = 1, . . . , 8) corner 
node, nf is the unit vector normal to the face at the mid-face nodefand N f  is the shape function 
for the mid-face node f(equation (19)). 

By combining the first two terms in equation (23), we obtain the expressions for the three 
components of velocity within a Q: Po element: 

where ux, uy and uz are respectively the x-, y -  and z-components of velocity at a point inside a 
Q: Po element, n;, n> and n; are respectively the x-, y- and z-components of the unit vector 
normal to the face at the mid-face node f and u;, us and u; are respectively the x-, y- and 
z-components of velocity at the ith node. 

Equations (24H26) give the values of various terms in equation (4). The shape functions in 
equations (24H26), which have different variations for different velocity components, will be 
called multivariant shape functions, whereas the shape functions given in equations (19) and (20), 
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which have same variation for all three velocity components, will be called univariant shape 
functions. 

Next we are interested in finding the shape functions for the R: Po element. However, the shape 
functions for the R,Po element are presented first since they are required for the derivation of the 
shape functions for the RT Po element. 

5. SHAPE FUNCTIONS FOR R2Po ELEMENT 

An R2Po element (Figure 3) has velocity nodes at the eight corners and on each of the 12 edges of 
the brick element. The eight corner nodes have all three degrees of freedom, whereas each of the 
12 mid-edge nodes has only two degrees of freedom, which are the velocity components normal to 
the edge. 

The following equation gives the univariant shape functions for the corner nodes of the R,Po 
element : 

Ni=$(l+ t o ) ( l +  ~ o ) ( l  + l o )  (50 + vo  + Co-2). 

Ni=N + t o ) ( 1  + V O ) ( l  + i o ) ( l  -tz + t w  -1, + V m  - rz  +C). 

(27) 

(28) 
Since the velocity components normal to an edge of the reference element do not remain 

normal to the edge after transformation to the global reference frame, to find the multivariant 
shape functions for the R,Po element, the velocity vector at the mid-edge nodes is decomposed 
into normal and tangential components and different interpolations are used for the normal and 
tangential components. Using the shape functions given in equations (27) and (28), the velocity at 
a point inside the R2Po element can be represented as 

The univariant shape functions for the mid-edge nodes of the R,Po element are 

8 2 0  

u =  i = l  c NiUi+ i = 9  NiUi, 

where i =  1, . . . , 8  correspond to the eight corner nodes and i=9,  . . . , 20 correspond to the 12 
mid-edge nodes. By separating the tangential and normal velocity components at the mid-edge 
nodes, we obtain 

8 20 

i =  1 i = 9  
u = c Niui  + N i {  [ui - (ui - nli)nli -(ui * nZi)nzi] + (ui -nIi)nl i  +(ui*nZi)nzi}, (30) 

Figure 3. An R,P, element 
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where n l i  and n2i are the two orthonormal vectors perpendicular to the edge at the ith mid-edge 
node. 

Since the velocity component tangential to an edge of an R2P0 element varies linearly along the 
edge, the value of the tangential velocity component at the mid-edge node can be represented in 
terms of its value at the corner nodes at the two ends of the edge: 

where c =  1,2 correspond to the corner nodes at the two ends of the edge on which the ith 
mid-edge node is located and u, is the velocity at the corner node c. 

By interchanging the summations in the second term of equation (31), we obtain 

where e =  1, . . . , 3 correspond to the three mid-edge nodes adjacent to the ith corner node, 
ul' = u i - n l i  and u12=ui .n2i .  By combining the first two terms in equation (32), we obtain the 
expressions for the three velocity components in an R2P0 element: 

20 20 

i = 9  i = 9  

3 N  
Ni+ 1 [1-(n;e)2-(n;e)2] uf+ 2 (Nin;i)uY'+ C (Ninii)uy2, (35) 

i =  1 e = l  2 

where nTe, n;, and n;e ( i=  1,2) are respectively the x-, y- and z-components of the unit vectors 
normal to the edge at the mid-edge node e. 

At the centre of a face of the R2P0 element the value of the univariant shape functions 
corresponding to the four corner nodes of the face is Ni=  -a and the value of the univariant 
shape functions corresponding to the four mid-edge nodes is Ni=4. Therefore the three 
components of velocity at the centre of a face of the R,Po element are 

4 2  

c = l  e = l  

4 2 

ux= c (-$+ C *[1-(n'le)"(n;,)2] u:- C a(n'l.n:,+n;,nY,,)u; 
c = l  e =  1 
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) 
4 2  2 

uy= - c 1 $(n;en:e+n;en;e)u:+ 1 -$+ c $[1-(n:e)2-(n;e)2] u: 
c =  1 e =  1 c =  1 ( e = l  

In the next section these values of the three velocity components at the centre of the faces of the 
R2  Po element are used in the derivation of the shape functions for the R; Po element. 

6. SHAPE FUNCTIONS FOR R: Po ELEMENT 

At the mid-face nodes of the R l  Po element the univariant shape functions are the same as the 
biquadratic-linear shape functions used for the mid-face nodes of the QT Po element: 

In terms of the variables to, and to the general expression for the univariant shape function 
at the mid-edge nodes of the R: Po element is 

The general expression for the univariant shape function for the corner nodes of the R:Po 
element is 

Ni =$(1+ 50)(1+ ' l o ) ( l +  5 o ) U  - t o  - 'lo -50 + ro ' lo  + 'lo50 + 5050) .  (41) 

Using the same technique as for the Q: Po and R 2  Po elements, the multivariant shape functions 
for the R: Po elements can be derived by separating the tangential and normal components of 
velocity at the mid-face and mid-edge nodes. Using the univariant shape functions given in 
equations (39H41), the velocity within an R: Po element can be represented as 

8 20 26 

u =  1 Niui+ 1 Niui+ 1 Niui ,  
i =  1 i = 9  i = 2 1  

where i =  1, . . . , 8  correspond to the eight corner nodes, i=9, . . . , 20 correspond to the 12 mid- 
edge nodes and i=21, . . . , 26 correspond to the six mid-face nodes. 

By separating the normal and tangential velocity components at  the mid-edge and the mid-face 
nodes, we obtain 

8 2 0  

i = l  i = 9  
U =  1 N i y +  1 N ~ {  [ui-(ui * nli)nl i - (ui-  n2i)n2i] +(ui * nl i )n l i  

26 _ _  
+(ui * n2i)n2i} + 1 N ~ {  [ui-(ui - ni)ni] +(ui - ni)ni}. 

i = 2 1  
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Similar to the R2Po element, the tangential velocity component at the mid-edge node of the 
R l  Po element can be represented in terms of its value at the nodes on the two ends of the edge: 

8 

u =  c N,u,+  1 N, 41 [ u , - ( ~ ~ ~ n , , ) n ~ ~ - ( u ~ ~ n , ~ ) n ~ ~ ]  
i= 1 i = 9  2o ( ,Il 

2 0  26 26 

i = 9  i = 2 1  i = 2 1  
+ 1 Ni(ul1nIi+ulZnzi)+ 1 N,uYn,+ C Ni[ui-(ui-ni)ni]. 

By interchanging the summations in the second term of equation (43), we obtain 

(43) 

where the notation used is the same as that in equation (32). 
The last term in equation (44) requires special attention. The velocity components tangential to 

the face at the mid-face nodes of the R: Po element should be expressed in terms of the three 
velocity components at the four nodes at the corners of the face and the two velocity components 
normal to the edge at the mid-edge nodes on the four sides of the face. Using the expressions 
derived for the components of velocity at the centre of a face of the R2P0 element (equations 
(36-38)), the x-component of the last term in equation (44) is 

26 

i = 2 1  
C Ni[u;-(ui-ni)n;] 

2 6  
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4 where in c;:,, . . . I,= . . . c,"= . . . , i=21 ,  . . . , 26 correspond to the six mid-face nodes, 
with c = 1, . . . ,4 denoting the associated four corner nodes for each of these faces and e =  1 , 2  
corresponding to the two mid-edge nodes on the face with the ith mid-face node, which are 
adjacent to the corner node c, whereas in c;:,, . . . CeZ1 . . . , e =  1, . . . ,4 correspond to the 
mid-edge nodes on the four sides of the face on which the ith mid-face node is located. 

The x-component of velocity at a point inside an R: Po element can be obtained by collecting 
the terms for each degree of freedom in equations (44) and (45): 

4 

2 2 

-$+ c $[l - (n :e )2 - (n ;e )2 ]  n;n;+ c $(n:en;e+nY,en;e)n*n= u; -( e = l  ) e = 1  41 

Similarly, the y- and z-components of velocity within an R: Po element are 

3 2 
(n;,n:,+nfenYze)+ f = 1  1 Nf[ -( -*+ e =  1 1 $ [ l - ( n ; e ) 2 - ( n ; e ) 2 ] ) n ; n j  

11 2 2 

- 1 $(n;,n:,+n;,nY,,)[l - ( n ; ) 2 ]  + c t (n; ,n; ,+n; ,n. , , )np;  u; 
e =  1 e =  1 
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The multivariant shape functions for the R:Po element can also be derived in a slightly 
different manner, by first finding out the velocity component tangential to the edge at the mid- 
edge nodes of the R: Po element and then using the QL2O)P0 element to determine the tangential 
components of velocity at the mid-face nodes of the R: Po element. 

The velocity component tangential to an edge of an RZ Po element varies linearly along the 
edge; therefore the velocity at a mid-edge node of an R i  Po element is given by 

2 

c =  1 
u,=u;l n,, +uzZn,,+ 1 +(u, * t,)t,, (49) 

where c = 1,2 correspond to the corner nodes at the two ends of the edge on which the mid-edge 
node e is located and t, is the unit vector tangential to the edge. 

The value of the velocity at the centre of a face of the Q\20)Po element is given by 
4 4 

c =  1 e = l  
Uf = -$I u,++ 1 u,, 

where c =  1, . . . ,4 correspond to the four corner nodes and e =  1, . . . ,4 correspond to the four 
mid-edge nodes associated with the face f. 
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Using equations (49) and (50), the x-component of the last term in equation (44) is 
26 2 Ni[u; -(ui * nj)n;] 

i = 2 1  

26 

i = 2 1  
= C N i  [u; - (u; n; + u; n; + uf nf)n;] 

where c, t: and t: are respectively the x-, y -  and z-components of the unit vector tangential to the 
edge on which the mid-edge node e is located. 

The x-component of velocity at a point inside the Rl Po element can be obtained by collecting 
the terms for each degree of freedom in equations (44) and (51): 

3 N f  8 

ux= i =  c 1 [ N i -  / = 1  c -[I-(n;)']+ 4 e = l  c (+[l-(nTe)2-(n$e)2] 

26 

i = 2 1  
Ni&+ 1 - N /  {n~i[1-(n;)2]-nY,in;ny/-nZ,in;n;) uY2+ c (Nin:)u;. (52) 

i = 9  / = 1  2 
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Similarly, the y- and z-components of velocity within an R; Po element are 

e =  1 

N f  
f = 1  4 

+ i =  5 1 [ N i -  J = 1  i %[l-(n’;)’]+ 4 

f = 1  4 

e =  1 

f = 1  4 

i = 9  f = 1  2 

i = 9  f = 1  2 

26 

Nin:,+ c -{-n?,njn;+n:,[l N f  - (n;t ) ’ ] - r~n;~n;n;)  

Nin;i+ 1 -{-~;i~;n’f+n5i[1-(n~)2]-n~inyfn;} *f uY2+ 1 ( N i n ; ) ~ ; ,  (53 )  
1=21 

>I + 1 -{  N f  -(t:)’n;n;-~t:n;n;+t,xt~[I-(n;)2]} u; 
f = 1  4 

N f  

f = 1  

26 

1=21 
1 (Ninf)ul .  (54) 
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Using the following identities for three orthonormal vectors n, , n2 and n3, 

(n:))’ +(n;)’ +(n;)’ = 1, M =x, y, z, (55) 

n; n f  +nd,n$ + n:nB, =O,  a, b= x, y ,  z,  M #b,  (56) 
where n f ,  ny and nt are respectively the x-, y- and z-components of the unit vector ni, it can be 
easily shown that the multivariant shape functions given in equations (46H48) are identical to the 
multivariant shape functions given in equations (52H54) respectively. 

Using the shape functions introduced in Sections 3-6, we have developed FEM programmes to 
simulate viscous incompressible flows using the QIPo, Q:Po and R:Po elements. These 
programmes are used in the remainder of this paper to explore the inherent characteristics of the 
three types of finite elements. 

7. DEVELOPING FLOWS 

An example of developing flow is the flow through a long thin tube coming out of an opening at 
the bottom of a large tank. In this section the performance of the Q1 Po, Q: Po and R: Po 
elements in simulating a developing flow in a circular channel is investigated. Figure 4 shows the 
finite element mesh used to analyse the developing flow in a circular channel. The radius of the 
cross-section of the channel is 1 cm and the length of the channel is 6 cm. The velocity profile is 
flat at the entrance. Owing to the no-slip condition, the velocity is zero at the lateral surface of the 
channel. The flow is completely developed before the exit is reached. For the developed flow at the 
exit the traction force is specified to be zero in the down-channel direction. Zero velocity across 
the channel is the boundary conditon used in the remaining two directions at the exit. The fluid 
used is low-density polyethylene (Table I). 

Figure 4. Finite element discretization of a circular channel 

Table I. Material properties of low-density Polyethylene (LDPE), 
wire-covering grade’ 

Reference viscosity po 2000Nsm-’  
Reference strain rate E, 

Temperature coefficient of viscosity b, 
1.0 s-’ 
0.01 “C - 1 

Power law index n 048 
Density p 750 kgm-3 



LEGEND 
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....... 9 At z=1.2cm .......... 
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0 At z = 6.Ocm 

Figure 5. Development of axial velocity along a circular channel using (a) R: Po, (b) Q: Po and (c) QI  Po elements 
(theoretical velocity profile from Reference 14) 
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Figures 5(at5(c) present the velocity profiles along the diameter of the circular channel at six 
different locations, using the R: Po, Q l  Po and Q1 Po elements respectively. As expected 
physically, the R: Po elements give a progressively developing velocity profile. The fully de- 
veloped velocity profile also matches very well with the velocity profile obtained analytically. l4 

The QTPo elements also give a fully developed velocity profile which is very close to the 
analytically obtained velocity profile, but the calculated velocity profile overshoots the fully 
developed velocities before finally dropping back to the developed profile. Using the boundary 
conditions given earlier, the Q1 Po element failed to simulate the developing flow and exhibited 
oscillations in the velocity profile throughout the channel. The pressure distribution in the 
circular channel obtained using the Q,P, elements is found to suffer from the checkerboard 
pressure mode (Figure 6), but the pressure variation obtained by averaging over the neighbouring 
Q1 Po elements is very close to the analytical result (Figure 7). The R: Po element gives a linear 
pressure distribution in most of the channel except near the entrance. The small deviation in the 
pressure distribution near the entrance is due to the developing velocity profile. The pressure 
obtained from the QlP ,  elements is also very close to the analytical value but shows some 
deviation from the linear distribution owing to the developing nature of the flow. 

We have also done a similar analysis for a developing flow through a channel with a 
rectangular cross-section.' Even for simulating a developing flow through a rectangular channel, 
the three types of finite elements perform in a manner very similar to that observed for the 
developing flow in a circular channel. 

The discrepancy in the behaviour of the different elements in simulating developing flows is due 
to the discontinuity in the boundary condition at the channel entrance. Owing to the no-slip 
condition, immediately beyond the entrance the fluid velocity at the wall changes from the 
uniform velocity at the entrance to zero. As presented in the next section, similar discontinuities 
can occur in many other problems. A possible cure is also presented in the next section. 

'0.00 0.01 0.02 0.03 0.04 0.05 
Axialdistance(In) 

DB 

Figure 6. Pressure variation along a circular channel using Q1 Po elements 
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Figure 7. Pressure variation along a circular channel 

8. DISCONTINUITIES IN BOUNDARY CONDITIONS 

It is evident from the discussion in the last section that discontinuities in the boundary conditions 
may lead to disturbances in the calculated velocity field obtained by using the Q1 Po element. Of 
course, in real life there are no such discontinuities in the boundary conditions. The singularity 
at the entrance of the channels in the developing flow simulations originates from the no-slip 
condition at the lateral boundaries and the uniform velocity boundary condition imposed at the 
inlet. The singularity can be removed by relaxing either of these idealizations. Using the Q,P, 
elements, developing flow in channels can be simulated with reasonable accuracy if the no-slip 
condition is relaxed at the nodes next to the entrance at the lateral boundaries. With the velocity 
at this layer of nodes at the lateral boundaries specified to be half of the uniform velocity at the 
inlet, the velocity development along the circular channel is shown in Figure 8. With these new 
boundary conditions the velocity profile near the entrance is not very accurate, but the velocity 
distribution farther away from the entrance is quite accurate. The developing flow can also be 
simulated using the Q1 Po elements if the uniform velocity profile at the inlet is modified to force 
the no-slip boundary condition on the lateral boundary. The velocity development along the 
circular channel with the modified entrance velocity profile is shown in Figure 9. It shows some 
fluctuations before converging to the power-law velocity profile. A much stronger influence of the 
discontinuous boundary conditions is experienced in the next example on the drag flow across a 
rectangular channel. 

8.1. DragJEow across a rectangular channel 

In this subsection the cross-channal drag flow caused by a plate moving on top of a rectangular 
channel is analysed. Two types of finite element meshes used to analyse the flow are shown in 
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Figure 8. Development of axial velocity along a circular channel using Q,Po elements with partially relaxed no-slip 
condition 
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Figure 9. Development of axial velocity along a circular channel using Q1 Po elements 

Figure 10. The first mesh is a uniform mesh, whereas the second mesh is a non-uniform mesh with 
finer elements at the two top corners where the velocity and pressure gradients are maximum. At 
the top corners the boundary conditions are discontinuous. Since the side walls are stationary, the 
velocity is specified to be zero on the top corners, whereas the particles at  the neighbouring nodes 
on the top moving plate have the same velocity as that of the moving plate owing to the no-slip 
condition. At the two open sides, assuming a fully developed flow, the velocity component along 
the channel and the two components of the traction force normal to the axis of the channel are 
specified to be zero. 

For the cross-channel drag flow the velocity distributions across the rectangular channel 
obtained by using a non-uniform mesh of Q: Po and R,f Po elements are shown in Figures 1 l(a) 
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Figure 10. Finite element discretization of a rectangular channel (a) uniform mesh; (b) non-uniform mesh 

L 

(b) 

Figure 11. Velocity field across the channel for cross-channel drag flow using (a) Q: Po and (b) R; Po elements 
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and 1 l(b) respectively. The corresponding pressure contours are shown in Figures 12 (a) and 12(b) 
respectively. The velocity distributions in Figure 11 and the pressure contours in Figure 12 are as 
expected for the cross-channel drag flow. For the cross-channel drag flow there are singularities at 
the top corners. The pressure changes from - co to co from one end to the other. In the cross- 
channel flow simulation using the Q1 Po element these singularities generate very strong disturb- 
ances inside the flow domain. On the non-uniform mesh of QIPo elements, with 14 elements on 
the driven side (the top plate) and seven elements on each of the two remaining sides, the velocities 
obtained do not even satisfy the constant-velocity boundary condition at the top surface and the 
zero-velocity boundary condition at the three remaining sides for the normal blasting factor 
(Reference 16, pp. 195-196) of 10" used for forcing the boundary conditions by the blasting 
technique (Figure 13(a)). As the blasting factor is increased, the boundary conditions are largely 
satisfied, but then the velocity at some nodes in the flow domain is found to be as large as 
104cm s- '  for the top plate drag velocity of 2.688 97 cms-'. The velocity distribution obtained 
with a uniform mesh with the same number of QIPo elements (Figure 13(b)) is no better. The 
pressure distributions obtained on the non-uniform and uniform meshes for the cross-channel 
drag flows suffer from the checkerboard pressure mode (Figures 14(a) and 14(b)). The small 
rectangular cells in these pressure contours are due to the very high and very low pressures on the 
neighbouring elements. Even the pressure contours obtained after averaging the pressure over the 
neighbouring elements are not satisfactory (Figures 15(a) and 15(b)). In Figures 15(a) and 15(b), 
before plotting the contours, the pressure values at the corners, which are obtained by averaging 
over only two elements and are still afflicted with the checkerboard pressure mode, have been 
discarded. 

(b) 

Figure 12. Pressure contours across the channel for cross-channel drag flow using (a) Q: Po and (b) R; Po elements 
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Figure 14. Pressure contours across the channel for cross-channel drag flow using Q,P, elements with (a) a non-uniform 
mesh and (b) a uniform mesh 
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(b) 

Figure 15. Pressure contours across the channel for cross-channel drag flow after averaging over Q, Po elements using 
(a) a non-uniform mesh and (b) a uniform mesh 

Figure 16. Velocity distribution across the channel for cross-channel drag flow using a non-uniform mesh with 15 Q, PO 
elements on the driven side 

It was shown analytically by Sani et aL3 that two-dimensional cross-channel drag flow with 
zero velocity specified at the top corners is not a well-posed problem for an even number of 
elements on the driven side. The cross-channel drag flow problem with zero velocity at the top 
corners is a well-posed problem if an odd number of elements are used on the driven side and the 
first and last elements have the same length. Figure 16 shows the velocity distribution for the 
cross-channel drag flow obtained by using 15 Q,Po elements on the driven side. The velocity 
distribution in Figure 16 shows some fluctuations but is close to the velocity distribution 
obtained by using the Q: Po and R i  Po elements. The pressure distribution obtained by using 15 
Q,Po elements on the driven side also suffers from the checkerboard pressure mode (Figure 17(a)), 



VISCOUS INCOMPRESSIBLE FLOW SIMULATION 58 1 

(b) 

Figure 17. Pressure contours across the channel for cross-channel drag flow using a non-uniform mesh with 15 Q,P, 
elements on the driven side: (a) with checkerboard pressure mode; (b) after averaging over the neighbouring elements 

but the checkerboard pressure mode is eliminated by averaging the pressure over the neigh- 
bouring elements (Figure 17(b)).* 

The trick for simulating cross-channel drag flow using an even number of Ql Po elements on 
the driven side is similar to the remedy used for simulating developing flows, i.e. flatten the 
discontinuities in the boundary conditions or allow leakage flow at the top corners. In the first 
case the no-slip condition is partially relaxed at the nodes on the top plate next to the top corners. 
On these nodes the velocity is specified as half of the top plate velocity. The remaining boundary 
conditions are the same as used before. With these new boundary conditions the velocity 
distribution obtained is shown in Figure 18. The velocity distribution is very close to the velocity 
distributions obtained by using the Ql Po and R: Po elements (Figures 1 l(a) and 1 l(b)). Even 
with the new boundary conditions the pressure distribution obtained suffers from the checker- 
board pressure mode (Figure 19(a)). The pressure contours obtained after averaging over the 
neighbouring elements are shown in Figure 19(b). The pressure values at the four corners have 
been discarded before plotting the pressure contours, as before. With the new boundary 
conditions the pressure contours obtained after averaging the pressure over the neighbouring 
Q1 Po elements are very close to the pressure contours obtained by using the Q: Po and R: Po 
elements (Figures 12(a) and 12(b)). 

If leakage flow is allowed at the top corners by specifying the top plate velocity at the corner 
nodes, the Q,Po elements successfully simulate the cross-channel drag flow. Figure 20 shows the 

* A volume-weighting scheme3 has been used to obtain the pressure values in Figures 17(b), 19(b) and 21(b). 
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I I  
Figure 18. Velocity distribution across the channel for cross-channel drag flow using a non-uniform mesh of QIPo 

elements with the no-slip condition partially relaxed at the top corners 

Figure 19. Pressure contours across the channel for cross-channel drag Row using QIPo  elements with the no-slip 
condition partially relaxed at the top corners: (a) with checker board pressure mode; (b) after averaging over the 

neighbouring elements 

velocity distribution obtained by using the QIPo elements for the cross-channel drag flow with 
leakage flow at the top corners. Even with the leakage flow the pressure distribution for the cross- 
channel drag flow obtained from the Q,Po elements is afflicted with the checkerboard pressure 
mode (Figure 21(a)). The pressure distribution obtained after taking a weighted average of the 
pressure over the neighbouring Q1 Po elements is shown in Figure 21(b). The pressure values at 
the four corner nodes, which are obtained by averaging the pressure on the two neighbouring 
Q1 Po elements only, are still afflicted with the checkerboard pressure mode. These pressure 
values at the four corners have been discarded before plotting the contours in Figure 21(b). That is 
why in Figure 21(b) the extreme values of pressure are not at the top comers. The velocity and 
pressure distributions for the cross-channel drag flow with leakage flow obtained by using the 
QTPo and Rl Po elements are shown in Figures 22 and 23 respectively. 
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Figure 20. Velocity distribution across the channel for cross-channel drag flow with leakage flow at the top corners using 
Q, Po elements 

(b) 

Figure 21. Pressure contours across the channel for cross-channel drag flow using Q1 Po elements with leakage flow at the 
top corners: (a) with checkerboard pressure mode; (b) after averaging over the neighbouring elements 

9. CONCLUSIONS 

Univariant elements, which have three degrees of freedom (two degrees in the two-dimensional 
case) at  all velocity nodes, have identical variations for all the velocity components. Accordingly, 
the value of a velocity component within a univariant element depends only upon the nodal 
values of the same velocity component. For multivariant elements, which have restricted degrees 
of freedom at some nodes, different components vary differently within the element. The shape 
functions for the multivariant elements Q: Po and R,f Po were introduced in Sections 4 and 6 
respectively. In contrast to the univariant elements, for multivariant elements each velocity 
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. . .  I . .  
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Figure 22. Velocity distribution across the channel for cross-channel drag flow with leakage flow at the top corners using 
(a) QT Po and (b) RZP, elements 

(b) 

Figure 23. Pressure contours across the channel for cross-channel drag flow with leakage flow at the top corners using 
(a) Q: Po and (b) Ri Po elements 
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component within an element depends upon the values of all the independent velocity compon- 
ents at the nodes of the element. 

The pressure distribution obtained from the QIPo element, which does not satisfy the 
BabuSka-Brezzi condition, is afflicted with the checkerboard pressure mode. Over the uniform 
finite element meshes used, the checkerboard pressure mode mud be eliminated by taking a 
weighted average of the pressure over the neighbouring Q, Po elements. The pressure distribu- 
tions obtained from the Q: Po and R: Po elements, which satisfy the BabuSka-Brezzi conditions, 
are free from spurious pressure modes. 

If the Q1 Po element is used to simulate flows having discontinuous boundary conditions, 
singularities at the boundaries may propagate disturbance in the complete flow domain, giving 
completely erroneous velocity and pressure distributions. The velocity distribution for the flow 
with discontinuous boundary conditions obtained by using the QT Po element shows some 
disturbances, but the fluctuations are restricted to a small region near the singular points. On the 
other hand, the use of the Ripo element to simulate flows with discontinuous boundary 
conditions gives very accurate velocity distributions free from fluctuations. Flows with discontin- 
uous boundary conditions were successfully simulated by partially relaxing the no-slip condition 
on the Q,Po elements near the singular points. 
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